QC-MDPC (BIKE) Failure Analysis Survey

Ray Perlner

Overview

- BIKE is a code based KEM and a 3rd round candidate in the NIST PQC standardization process
- It uses the Niederreiter variant of the McEliece Construction, with a QC-MDPC code
 - Alternately, this could be viewed as the NTRU construction with Hamming metric
- Unlike Goppa McEliece, QC-MDPC McEliece has a decoder that sometimes fails
- In order to get IND-CCA security for up to 2⁶⁴ queries, the failure rate must be very low
- The BIKE team's best estimates of the failure rate for BIKE's parameters is low enough
 - But are the estimates correct?
 - The BIKE team does not claim their estimates are correct, and therefore only claims IND-CPA security
 - Can we do more to confirm or disconfirm

Some Coding Theory

- Generator matrix (Systematic form)
 - $n \times k$

 $G = [I_k \mid C]$

- Parity Check matrix (Systematic form)
 n × (n k)
 - $H = \left[-C^T\right|I_{n-k}\right]$
- Defining feature: $HG^T = 0$
- Codewords x may either be defined as
 - *n*-bit vectors that can be expressed as x = mG for *k*-bit *m*
 - Solutions to $Hx^T = 0$

• Syndrome:

$$s = H(mG + e)^T = H(e^T)$$

- Mapping s to minimal weight e is sometimes easy but NP hard in general.
- McEliece Encryption: mG + e is ciphertext, m is plaintext.
- Niederreiter Encryption: *s* is ciphertext, *e* is plaintext.
 - Note: Both "McEliece" and Niederreiter KEMs for BIKE use Hash(e) as shared secret.

Quasi-Cyclic Structure

- Use n = 2r; k = r, where r is prime and $x^r 1$ is (x 1) times a primitive polynomial mod 2.
- Represent $r \times r$ blocks as polynomials in the ring $GF2[x]/x^r 1$.
 - Now block multiplication commutes.
 - And blocks only require k bit representation.
 - They look like this:

$$\begin{pmatrix} a & b & c & d & e & f \\ f & a & b & c & d & e \\ e & f & a & b & c & d \\ d & e & f & a & b & c \\ c & d & e & f & a & b \\ b & c & d & e & f & a \end{pmatrix}$$

BIKE Construction (Niederreiter)

- Public key: Blockwise cyclic parity check matrix H = (I h)
 h = x⁻¹y; (x, y) is "short" (weight w) in Hamming metric
- Ciphertext: $c = He^T = e_0 + he_1$
 - (e_0, e_1) is "short" (weight t) in Hamming metric
- Decoding
 - Private key allows decoding of $xc = xe_0 + ye_1 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} e_0 \\ e_1 \end{pmatrix}$ using
 - Bit flipping algorithm
 - If decoding succeeds, use (e_0, e_1) to derive a shared secret
 - Combine with Fujisaki-Okamoto transform for CCA security, if failure rate is low enough

BIKE Parameters

Security	r	\boldsymbol{w}	t	DFR
Level 1	12,323	142	134	2^{-128}
Level 3	24,659	206	199	2^{-192}

- Note:
 - w and t are approximately equal to the security parameter
 - $r \approx \frac{wt}{2}$
 - To lower the DFR, increase r, while fixing w, t

Bit-Flipping Decoder

- We want to solve $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} e_0 \\ e_1 \end{pmatrix} = s$ for $\begin{pmatrix} e_0 \\ e_1 \end{pmatrix}$
 - Think of *x*, *y* as matrices
- Since \$\begin{pmatrix} e_0 \\ e_1 \$\end{pmatrix}\$ is t-sparse, s is the sum of t columns of \$(x y)\$
 Each column has weight \$\frac{w}{2}\$

 - Since $\frac{wt}{2} < r$, not many bits cancel
 - So the columns in the sum (with same index as nonzero bits of $\binom{e_0}{e_1}$) share a lot of nonzero bits with s
- Iterated algorithm to decode

 - Guess that the columns with a lot of 1s in common with s are nonzero bits of $\begin{pmatrix} e_0 \\ e_1 \end{pmatrix}$ Subtract off the syndrome corresponding to the guess from both sides of $\begin{pmatrix} x & y \\ e_1 \end{pmatrix} = s$

• Resulting in
$$(x \quad y) \begin{pmatrix} e_0' \\ e_1' \end{pmatrix} = s'$$

• If s' = 0, you're done. Otherwise, try to decode s' same way as s

Other Decoders

- Many variants of the basic bit flipping decoder have been proposed
 - Backflip decoder (2nd round) [Sendrier, Vasseur 2019]
 - Black-Grey-Flip (BGF) decoder (pre-3rd round) [Drucker, Gueron, Kostic 2019]
- Usually the motivation is a lower decryption failure rate
- However, all decoders work on a similar principle to bit flipping
- No proposed parameter set claims a zero decryption failure
 - As we'll see later, the DFR cannot be 0
- Why are decryption failures bad?

GJS attack [Guo, Johansson, Stankovski 2016]

- The bit flipping decoder doesn't always work
- Ciphertexts/error vectors that induce failures give statistical info about private key
 - Error vectors where there are bits the same distance apart as two bits of the private key are LESS likely to induce a decoding failure
 - Lists of distances between pairs of nonzero coefficients in each of x, y, e₀, e₁ are called distance spectra
- Can recover a key with ~100,000 known decryption failures
- Interesting tidbit: If ALL of the nonzero coefficients of $\binom{e_0}{e_1}$ are in e_0 or e_1 the DFR is higher. Too rare to use?

Error Amplification [Nilsson, Johansson, Wagner 2018]

- Builds upon distance spectrum idea from GJS attack
- Can use a known decryption failure to build other ciphertexts more likely to produce a decryption failure
 - This means that the majority of the cost of the attack involves finding the first decryption failure
- If the number of iterations to used to decode is variable, that side channel information can be used to speed up finding the first decryption failure
 - We think BIKE's current implementation is constant time, and if we discover it isn't, we will expect them to fix it

Bounding the Error Rate

- When the DFR is high, e.g. 2^{-35} or more, it can be directly measured
- But, to protect against known attacks, need DFR< 2^{-64} , and to prove security need DFR< 2^{-128} (Cat 1) or DFR< 2^{-192} (Cat 3)
- How do we know when we reach these targets if we cannot directly measure the DFR?
 - LEDAcrypt's approach was to use really conservative parameters (~50% larger key sizes than BIKE) and get a loose upper bound on the DFR
 - But they had other problems (attacked and patched in 2nd round, due to extra structure removed in patch)
 - BIKE derives a curve to fit the relation between the parameter *r* and the DFR from a Markov model with simplified asssumptions, and extrapolates

Markov Model and Extrapolation

[Sendrier, Vasseur 2018], [Sendrier, Vasseur 2019], [Drucker, Gueron, Kostic 2019]

- Simulate a simplified decoding algorithm using a Markov model
 - Drawbacks:
 - Doesn't analyze actual BIKE decoder, but one which is simpler and empirically less efficient
 - Treats bits of syndrome as independent random variables
 - Treats any weight t decoding as a success
- Uses the derived form (exponential in r^2 up to a critical value, then exponential in r, no kink) to extrapolate DFR assuming critical point is as soon as it can be
 - That this extrapolation works "long enough" is called concavity assumption in [Sendrier, Vasseur 2019]
 - Error floors suggest it can't work forever, but might work long enough

Figure 1. DFR of the step-by-step algorithm in the models and from simulations (infinite number of iterations)

Error Floors

Image on right from [Richardson] illustrating similar phenomenon in related code to BIKE

- Note that $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix} = 0$
- This means $\begin{pmatrix} y \\ \chi \end{pmatrix}^T$ is a valid generator matrix for the QC-MDPC code underlying BIKE, and its rows are codewords of weight w
- If the error pattern shares at least w/2 one bits with a short codeword, there is another codeword with the same syndrome, and decryption must fail with at least 50% probability
- For category 1 BIKE parameters this means the DFR is at least 2^{-346}

Figure 1: Simulation and error floor predictions for some regular (3,6) LDPC codes using a 5-bit decoder. The codes in order from highest to lowest error floor are the Margulis graph (n=2640), an n=2048 code, an n=2640 code (same as the Margulis graph), and an n=8096 code. The dashed curves are extrapolations. Except for the Margulis code, code simulations were performed on an FPGA platform. Error floor predictions are computed on a PC.

Directions for Future Work

- Can we get a tighter proven bound on DFR , preferably with a more efficient decoder, than what the LEDAcrypt team did
 - Maybe some kind of computer aided proof?
 - This is the dream, but I have no idea how to do it
- Can we test the convexity assumption with the real decoder
 - Use parameters targeting a low security parameter, so we can directly measure error floor area
 - Use normal, or intermediate parameters, but amplify error floor phenomenon by choosing error vectors near (but not within t w/2 of) known, short codewords

References

- Latest BIKE spec. <u>https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf</u>
- Reaction attack
 - Guo, Johansson, Stankovski 2016: https://eprint.iacr.org/2016/858.pdf
- Error Amplification
 - Nilsson, Johansson, Wagner 2018: <u>https://eprint.iacr.org/2018/1223.pdf</u>
- Estimating/bounding failure rate
 - Markovian analysis (Simple decoder, infinite iterations)
 - [Sendrier, Vasseur 2018]: <u>https://eprint.iacr.org/2018/1207</u>
 - Extrapolation (Backflip decoder)
 - [Sendrier, Vasseur 2019]: <u>https://eprint.iacr.org/2019/1434.pdf</u>
 - Extrapolation (Black and Gray Decoder)
 - [Drucker, Gueron, Kostic 2019]: <u>https://eprint.iacr.org/2019/1423</u>
 - Explicit bounds for 1 (tight) or 2 (loose) iterations (IR BF Decoder)
 - [Baldi et al. 2020] <u>https://re.public.polimi.it/retrieve/handle/11311/1144467/513367/SECRYPT_2020_118_CR.pdf</u>
- Describing error floors (I don't think this paper originated the idea):
 - [Richardson]: <u>https://web.stanford.edu/class/ee388/papers/ErrorFloors.pdf</u>