
QC-MDPC (BIKE)
Failure Analysis Survey

Ray Perlner

Overview

• BIKE is a code based KEM and a 3rd round candidate in the NIST PQC
standardization process

• It uses the Niederreiter variant of the McEliece Construction, with a QC-MDPC
code
• Alternately, this could be viewed as the NTRU construction with Hamming metric

• Unlike Goppa McEliece, QC-MDPC McEliece has a decoder that sometimes fails

• In order to get IND-CCA security for up to 264 queries, the failure rate must be
very low

• The BIKE team’s best estimates of the failure rate for BIKE’s parameters is low
enough
• But are the estimates correct?
• The BIKE team does not claim their estimates are correct, and therefore only claims IND-CPA

security
• Can we do more to confirm or disconfirm

Some Coding Theory

• Generator matrix (Systematic form)
• 𝑛 × 𝑘

𝐺 = [𝐼𝑘 | 𝐶]

• Parity Check matrix (Systematic form)
• 𝑛 × (𝑛 − 𝑘)

𝐻 = −𝐶𝑇 𝐼𝑛−𝑘]

• Defining feature: 𝐻𝐺𝑇 = 0

• Codewords 𝑥 may either be defined as
• n-bit vectors that can be expressed as
𝑥 = 𝑚𝐺 for 𝑘-bit 𝑚

• Solutions to 𝐻𝑥𝑇 = 0

• Syndrome:

𝑠 = 𝐻 𝑚𝐺 + 𝑒 𝑇 =
𝐻(𝑒𝑇)

• Mapping s to minimal weight e is
sometimes easy but NP hard in general.

• McEliece Encryption: 𝑚𝐺 + 𝑒 is
ciphertext, 𝑚 is plaintext.

• Niederreiter Encryption: 𝑠 is
ciphertext, 𝑒 is plaintext.
• Note: Both “McEliece” and Niederreiter

KEMs for BIKE use Hash(𝑒) as shared
secret.

Quasi-Cyclic Structure

• Use 𝑛 = 2𝑟; 𝑘 = 𝑟, where 𝑟 is prime and 𝑥𝑟 − 1 is (𝑥 − 1) times a
primitive polynomial mod 2.

• Represent r × 𝑟 blocks as polynomials in the ring GF2 𝑥 /𝑥𝑟 − 1.
• Now block multiplication commutes.
• And blocks only require 𝑘 bit representation.
• They look like this:

𝑎 𝑏
𝑓 𝑎

𝑐 𝑑
𝑏 𝑐

𝑒 𝑓
𝑑 𝑒

𝑒 𝑓
𝑑 𝑒

𝑎 𝑏
𝑓 𝑎

𝑐 𝑑
𝑏 𝑐

𝑐 𝑑
𝑏 𝑐

𝑒 𝑓
𝑑 𝑒

𝑎 𝑏
𝑓 𝑎

BIKE Construction
(Niederreiter)
• Public key: Blockwise cyclic parity check matrix H = 𝐼 ℎ

• ℎ = 𝑥−1𝑦 ; 𝑥, 𝑦 is “short” (weight 𝑤) in Hamming metric

• Ciphertext: c = 𝐻𝑒𝑇 = 𝑒0 + ℎ𝑒1
• (𝑒0, 𝑒1) is “short” (weight 𝑡) in Hamming metric

• Decoding
• Private key allows decoding of 𝑥𝑐 = 𝑥𝑒0 + 𝑦𝑒1 = 𝑥 𝑦

𝑒0
𝑒1

using

• Bit flipping algorithm
• If decoding succeeds, use (𝑒0, 𝑒1) to derive a shared secret
• Combine with Fujisaki-Okamoto transform for CCA security, if failure rate is low

enough

BIKE Parameters

• Note:
• 𝑤 and 𝑡 are approximately equal to the security parameter

• 𝑟 ≈
𝑤𝑡

2

• To lower the DFR, increase 𝑟, while fixing 𝑤, 𝑡

Bit-Flipping Decoder

• We want to solve 𝑥 𝑦
𝑒0
𝑒1

= 𝑠 for
𝑒0
𝑒1

• Think of 𝑥, 𝑦 as matrices

• Since
𝑒0
𝑒1

is 𝑡-sparse, 𝑠 is the sum of 𝑡 columns of 𝑥 𝑦

• Each column has weight
𝑤

2

• Since
𝑤𝑡

2
< 𝑟, not many bits cancel

• So the columns in the sum (with same index as nonzero bits of
𝑒0
𝑒1

) share a lot of nonzero bits
with 𝑠

• Iterated algorithm to decode
• Guess that the columns with a lot of 1s in common with 𝑠 are nonzero bits of

𝑒0
𝑒1

• Subtract off the syndrome corresponding to the guess from both sides of 𝑥 𝑦
𝑒0
𝑒1

= 𝑠

• Resulting in 𝑥 𝑦 𝑒0′

𝑒1′
= 𝑠′

• If 𝑠′ = 0, you’re done. Otherwise, try to decode 𝑠′ same way as 𝑠

Other Decoders

• Many variants of the basic bit flipping decoder have been proposed
• Backflip decoder (2nd round) [Sendrier, Vasseur 2019]

• Black-Grey-Flip (BGF) decoder (pre-3rd round) [Drucker, Gueron, Kostic 2019]

• Usually the motivation is a lower decryption failure rate

• However, all decoders work on a similar principle to bit flipping

• No proposed parameter set claims a zero decryption failure
• As we’ll see later, the DFR cannot be 0

• Why are decryption failures bad?

GJS attack
[Guo, Johansson, Stankovski 2016]

• The bit flipping decoder doesn’t always work

• Ciphertexts/error vectors that induce failures
give statistical info about private key
• Error vectors where there are bits the same

distance apart as two bits of the private key are
LESS likely to induce a decoding failure

• Lists of distances between pairs of nonzero
coefficients in each of 𝑥, 𝑦, 𝑒0, 𝑒1are called
distance spectra

• Can recover a key with ~100,000 known
decryption failures

• Interesting tidbit: If ALL of the nonzero

coefficients of
𝑒0
𝑒1

are in 𝑒0 or 𝑒1 the DFR is

higher. Too rare to use?

Error Amplification
[Nilsson, Johansson, Wagner 2018]
• Builds upon distance spectrum idea from GJS attack

• Can use a known decryption failure to build other ciphertexts more
likely to produce a decryption failure
• This means that the majority of the cost of the attack involves finding the first

decryption failure

• If the number of iterations to used to decode is variable, that side
channel information can be used to speed up finding the first
decryption failure
• We think BIKE’s current implementation is constant time, and if we discover it

isn’t, we will expect them to fix it

Bounding the Error Rate

• When the DFR is high, e.g. 2−35 or more, it can be directly measured

• But, to protect against known attacks, need DFR< 2−64, and to prove
security need DFR< 2−128 (Cat 1) or DFR< 2−192 (Cat 3)

• How do we know when we reach these targets if we cannot directly
measure the DFR?
• LEDAcrypt’s approach was to use really conservative parameters (~50% larger

key sizes than BIKE) and get a loose upper bound on the DFR
• But they had other problems (attacked and patched in 2nd round, due to extra structure

removed in patch)

• BIKE derives a curve to fit the relation between the parameter 𝑟 and the DFR
from a Markov model with simplified asssumptions, and extrapolates

Markov Model and Extrapolation
[Sendrier, Vasseur 2018], [Sendrier, Vasseur 2019], [Drucker, Gueron,
Kostic 2019]

• Simulate a simplified decoding algorithm
using a Markov model
• Drawbacks:

• Doesn’t analyze actual BIKE decoder, but one which
is simpler and empirically less efficient

• Treats bits of syndrome as independent random
variables

• Treats any weight t decoding as a success

• Uses the derived form (exponential in 𝑟2 up
to a critical value, then exponential in 𝑟, no
kink) to extrapolate DFR assuming critical
point is as soon as it can be
• That this extrapolation works “long enough” is

called concavity assumption in
[Sendrier, Vasseur 2019]

• Error floors suggest it can’t work forever, but
might work long enough

Error Floors
Image on right from [Richardson] illustrating similar
phenomenon in related code to BIKE

• Note that 𝑥 𝑦 𝑦
𝑥

= 0

• This means
𝑦
𝑥

𝑇
is a valid generator

matrix for the QC-MDPC code
underlying BIKE, and its rows are
codewords of weight 𝑤

• If the error pattern shares at least
w/2 one bits with a short codeword,
there is another codeword with the
same syndrome, and decryption must
fail with at least 50% probability

• For category 1 BIKE parameters this
means the DFR is at least 2−346

Directions for Future Work

• Can we get a tighter proven bound on DFR , preferably with a more
efficient decoder, than what the LEDAcrypt team did
• Maybe some kind of computer aided proof?

• This is the dream, but I have no idea how to do it

• Can we test the convexity assumption with the real decoder
• Use parameters targeting a low security parameter, so we can directly

measure error floor area

• Use normal, or intermediate parameters, but amplify error floor phenomenon
by choosing error vectors near (but not within 𝑡 − 𝑤/2 of) known, short
codewords

References

• Latest BIKE spec. https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf

• Reaction attack
• Guo, Johansson, Stankovski 2016: https://eprint.iacr.org/2016/858.pdf

• Error Amplification
• Nilsson, Johansson, Wagner 2018: https://eprint.iacr.org/2018/1223.pdf

• Estimating/bounding failure rate
• Markovian analysis (Simple decoder, infinite iterations)

• [Sendrier, Vasseur 2018]: https://eprint.iacr.org/2018/1207

• Extrapolation (Backflip decoder)
• [Sendrier, Vasseur 2019]: https://eprint.iacr.org/2019/1434.pdf

• Extrapolation (Black and Gray Decoder)
• [Drucker, Gueron, Kostic 2019]: https://eprint.iacr.org/2019/1423

• Explicit bounds for 1 (tight) or 2 (loose) iterations (IR BF Decoder)
• [Baldi et al. 2020] https://re.public.polimi.it/retrieve/handle/11311/1144467/513367/SECRYPT_2020_118_CR.pdf

• Describing error floors (I don’t think this paper originated the idea):
• [Richardson]: https://web.stanford.edu/class/ee388/papers/ErrorFloors.pdf

https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf
https://eprint.iacr.org/2016/858.pdf
https://eprint.iacr.org/2018/1223.pdf
https://eprint.iacr.org/2018/1207
https://eprint.iacr.org/2019/1434.pdf
https://eprint.iacr.org/2019/1423
https://re.public.polimi.it/retrieve/handle/11311/1144467/513367/SECRYPT_2020_118_CR.pdf
https://web.stanford.edu/class/ee388/papers/ErrorFloors.pdf

